Post

What is in a Name? / Cosa c'è in un nome?

Immagine
 What is in a Name? /  Cosa c'è in un nome? Segnalato dal Dott. Giuseppe Cotellessa / Reported by Dr. Giuseppe Cotellessa Adalimumab, raxibacumab, and belimumab: There’s a method to this naming madness. The International Nonproprietary Name (INN)—an expert group within the World Health Organization (WHO)—oversees the official naming formula, which calls out specific mAb features including the intended target, original host, modifications, and conjugations. Monoclonal antibodies named prior to 2017 included two other sections. A second substem or infix was used to denote the source or host organism that the antibody was originally produced in (most commonly “u” for human or “o” for mouse). An additional modification was also used to indicate chimeric (“-xi-”) or humanized (“-zu-”) engineering. Due in part to ambiguities and concerns that the names were being manipulated for commercial reasons, these two features were scrapped when the new INN guidelines were introduced. ITALIANO Ad

What is Somatic Hypermutation? / Cos'è l'ipermutazione somatica?

Immagine
 What is Somatic Hypermutation? /  Cos'è l'ipermutazione somatica? Segnalato dal Dott. Giuseppe Cotellessa / Reported by Dr. Giuseppe Cotellessa Somatic hypermutation is a process by which mutations are introduced into CDRs to expand or enhance the ability of antibody-producing B-cells to bind to specific antigens. Fully Human mAbs Straight From the Source: Single Human B Cells One promising and potentially rapid method for developing fully human mAb therapeutics, especially for emerging pathogens, is isolating and sorting single B cells from humans that have been infected with a bacterial, viral, or eukaryotic pathogen. Individual antigen-positive B cells can be sorted by their ability to bind to labeled antigens. Positive binders are then sequenced, and heavy and light chain genes can be cloned for downstream optimization. This method is incredibly exciting and many research groups have reported the successful isolation of mAbs that target a number of pathogens.1 Human mAbs
Immagine
 Segnalazione al Dott. Giuseppe Cotellessa di lettura di suo post in Academia Edu / Reporting to Dr. Giuseppe Cotellessa of reading his post in Academia Edu  /  #30-5-2021 Dott. Giuseppe Cotellessa Dear Genio Italiano Giuseppe  Cotellessa G E N I U S Cotellessa, Someone recently saw  "Congratulations to Dr. Giuseppe  Cotellessa" in an Academia search. ITALIANO Gentile Genio Italiano Giuseppe  Cotellessa G E N I U S Cotellessa, Qualcuno ha visto recentemente  "Congratulazioni al Dott. Giuseppe  Cotellessa" in una ricerca  dell'Accademia.

Antibody Discovery / Scoperta di anticorpi

Immagine
 Antibody Discovery /  Scoperta di anticorpi Segnalato dal Dott. Giuseppe Cotellessa / Reported by Dr. Giuseppe Cotellessa Discovering an antibody that specifically binds to that target and picking lead candidates. Methods for discovering antibodies have gone through a massive transformation over the past few decades, streamlining the quality with which fully humanized monoclonal antibodies are discovered and tested.  The now “traditional” approaches to antibody discovery relied on the tedious generation of hybridomas; a hybrid cell type formed when a primary antibody-producing cell is isolated from an animal and fused with a myeloma cell. The process involved immunization of a model organism (usually a rodent), with the target recombinant antigen.  Antibody-producing splenocytes are then harvested from immunized mice, and single splenocytes producing a single antibody species are then fused with a continuously proliferating myeloma cell line to generate a hybridoma that secretes the

The Molecular Structure of Antibodies / La struttura molecolare degli anticorpi

Immagine
 The Molecular Structure of Antibodies /  La struttura molecolare degli anticorpi Segnalato dal Dott. Giuseppe Cotellessa / Reported by Dr. Giuseppe Cotellessa The success of monoclonal antibodies as a therapeutic class would not be possible without a strong understanding of antibody structure.  This knowledge fuels the modern engineering of antibody and antibody-related therapeutics with the desired antigen affinity, effector function, mechanism of action, and biophysical properties. TAILS AND ARMS  In simple terms, antibodies are Y-shaped quaternary proteins.  The base or “tail” is called the fragment crystallizable (Fc) region.  The two “arms” extending outwards are known as the fragment antigen-binding (Fab) region.  At the very tip of each arm is the paratope, which allows the antibody to bind a specific antigen epitope via the complementarity determining regions or CDRs. HEAVY AND LIGHT CHAINS  Zooming in, the critical Fragment Antigen Binding domains, e.g. Fab regions, comprise

The History of mAbs and Their Current Therapeutic Importance / La storia degli mAb e la loro attuale importanza terapeutica

Immagine
The History of mAbs and Their Current Therapeutic Importance /  La storia degli mAb e la loro attuale importanza terapeutica Segnalato dal Dott. Giuseppe Cotellessa / Reported by Dr. Giuseppe Cotellessa Since the first approval of a monoclonal antibody (mAb), Orthoclone OKT3 (muromonab-CD3), by the FDA in 1986, 570 different therapeutic mAbs have been clinically tested worldwide and 79 have been FDAapproved for a variety of indications.  The power of these therapeutics are well established, making the treatment of previously untreatable autoimmune, metabolic, neurologic, infectious diseases, and cancer possible.  This has fueled enormous growth and investment in the related R&D and clinical development.  In 2018 and 2019, the combined number of mAbs approved by the FDA totaled an impressive 18, with a further 12 mAbs approved in 2020 and an additional 16 mAbs in regulatory review.  In part, the increasing number of approved mAbs with enhanced specificity, potency, efficacy, and saf

Come migliorare l'autonomia e la sicurezza dei veicoli elettrici / How to improve the range and safety of electric vehicles

Immagine
Come migliorare l'autonomia e la sicurezza dei veicoli elettrici /  How to improve the range and safety of electric vehicles Segnalato dal Dott. Giuseppe Cotellessa /  Reported by Dr. Giuseppe Cotellessa I ricercatori dell'Università del Surrey hanno rivelato modi per migliorare le prestazioni dei futuri veicoli elettrici (EV), compresa l'autonomia e la sicurezza delle auto. La ricerca fa parte del progetto STEVE dell'Unione europea ed il gruppo ha sviluppato diversi approcci al torque vectoring nei veicoli elettrici che potrebbero essere implementati nelle future generazioni di veicoli di consumo. Per migliorare la sicurezza, sono stati sviluppati sistemi di controllo della stabilità per anticipare la curvatura della strada davanti, consentendo all'auto di frenare preventivamente quando si avvicina troppo velocemente a una curva. Il sistema di torque vectoring combina un modello di controllo previsto con la logica fuzzy per dare priorità alla dinamica del veicolo

Menzioni al Dott. Giuseppe Cotellessa su articoli riportati da Academia Edu / Mentions to Dr. Giuseppe Cotellessa on articles reported by Academia Edu / #29-5-2021

Immagine
 Menzioni al Dott. Giuseppe Cotellessa su articoli riportati da Academia Edu / Mentions to Dr. Giuseppe Cotellessa on articles reported by Academia Edu  / #29-5-2021 Dott. Giuseppe Cotellessa The name "Giuseppe Cotellessa" is mentioned in  20 papers uploaded to Academia, including one  in a paper by someone in Helsinki, Finland ITALIANO Il nome "Giuseppe Cotellessa" è menzionato in 20 articoli caricati su Academia, incluso uno in un articolo di qualcuno a Helsinki, Finlandia

How gene synthesis and protein services can help get your therapeutic to market faster / In che modo la sintesi genica ed i servizi proteici possono aiutare a portare la tua terapia sul mercato più velocemente

Immagine
How gene synthesis and protein services can help get your therapeutic to market faster /  In che modo la sintesi genica ed i servizi proteici possono aiutare a portare la tua terapia sul mercato più velocemente Segnalato dal Dott. Giuseppe Cotellessa / Reported by Dr. Giuseppe Cotellessa Custom DNA constructs accelerate therapeutic research Gene synthesis and protein services bypass time-consuming steps and produce optimized results. Rapid production of DNA and obtaining high protein yields is essential for fast-paced research, such as the development of chimeric antigen receptors (CARs), therapeutic monoclonal antibodies and vaccines. By synthesizing customized and optimized DNA constructs, researchers bypass many time-consuming and error-prone experimental steps and obtain high-quality protein products that accelerate therapeutic development. In therapeutic research areas such as chimeric antigen receptors (CARs) for T cell therapy, therapeutic monoclonal antibody production, or SA